

 Produced by the Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

Value at Risk in Python – Shaping Tech in Risk Management

The aim of this article is to give a quick taste of how it is possible to build practical codes in Python for financial

application using the case of Value at Risk (VaR) calculation. The following paragraph will present a brief

introduction to Python, then the article will continue with a broad overview of VaR without going into the details

of its mathematical properties and then it will tackle different VaR formulas, explaining the main intuition behind

and presenting the relative codes. To benefit the most from this article the reader should be already at least vaguely

familiar with the concept of Value at Risk, even better if also aware of the diverse mathematical properties of

different VaR formulas.

Why Python?

As cited in the official documentation on www.python.org:

“Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. Its high-level built in data

structures, combined with dynamic typing and dynamic binding, make it very attractive for Rapid Application Development, as well as

for use as a scripting or glue language to connect existing components together. Python's simple, easy to learn syntax emphasizes

readability and therefore reduces the cost of program maintenance.”

Historically there have often been different and diverse roles inside a financial company, specifically both the classic

code developer and the employee with a finance background have been present and have been working together

on finding a technological solution to perform finance related tasks. This implies that at first one would have to

sketch a code in an easy to learn language and then the developer would have to rewrite the initial idea in an

efficient way, using a faster and more complex programming language. Unfortunately this process has often implied

that the developer, not coming from a financial background, didn’t really understand the original idea in the code

and possibly made some mistaking during the process of improving the code while translating it or just rewriting

it. Nowadays some programming languages exist that are both fast and easy to learn so that one person can directly

code the initial idea without the need of a professional developer to rewrite it. This obviously jumps over possible

mistakes arising from communicational misunderstanding or poor knowledge coming from the developer or the

other employees.

Python is one of those languages. Thanks to its speed and easy semantics is in fact nowadays prominent in the

finance industry, and its success just keeps growing. To learn more about Python and on why it is a great tool for

finance follow the links below.

• https://www.python.org/doc/essays/blurb/
• https://www.safaribooksonline.com/library/view/python-for-finance/9781491945360/ch01.html

Value at Risk, brief introduction

Value at risk (VaR) is a certified achievement in the study of quantitative risk management and even if with time

its use is increasingly often being combined with other measures of risk, it is still present, in different forms, in the

agenda of all market risk managers. Its general form can be written as:

𝑟𝛼 = 𝑟: 𝑃(𝑅 ≤ 𝑟) = 𝛼

 Produced by the Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

Where rα is the VaR, hence that loss value for which probability of losses bigger than VaR itself is equal to α.

Despite various critiques concerning the inability of VaR to measure the magnitude of losses over α, it remains a

key element in financial risk management and for such reason its calculation is still very important.

There are multiple techniques to calculate VaR with differences in formulas and sampling, strongly altering their

ability to foresee future risks and to shield the asset manager from possible downsides, It is therefore of utmost

importance to understand the general differences among them. In the next section a brief introduction to the main

characteristic of four different VaR formulas is given and the relative Python code on how to build them is

presented.

VaR – one function for four formulas

An alternative and more precise solution to download the full code is to visit this GitHub repository where the

code is held:

https://github.com/BSIC/VaR

This first section contains the importing of the necessary libraries, the definition of a function that will contain all

the different formulas and parameters setting, and some initial settings to handle missing inputs. In every sub-

formula there will be a distinction between a call for a single VaR referring to the last period interval, and a call for

a series covering the whole set of data.

Parametric VaR (Variance/Covariance VAR) is the most common form used in practice due to its simple nature

and the low number of parameters it requires to be computed. To build it, the only variables needed are the mean

and the standard deviation of a portfolio/security. The problem that follows from such simple requirements is that

it works under two restrictive assumptions, namely normal distribution and independence of returns. This leads to

myopically equating all returns in terms of importance, overlooking big shocks that should be carried over and

should be given more power to impact the actual VaR. It is possible to notice, in fact, that the parametric method

is one of the most stable among the presented VaR formulas, highlighting its lack of capability to absorb new

information and shape the capital risk appropriately.

https://github.com/BSIC/VaR

 Produced by the Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

EWMA (Exponentially weighted moving average) is a step forward from the parametric VaR, in the sense that it

tries to solve the problem of slow reaction to new information and the equal importance of returns. Using a decay

factor the EWMA formula is able to weight different information as it comes in, giving more importance to recent

returns and less importance to data far in the past by slowly decaying their contribution to the VaR. Through this,

the measure limits the ‘echo effect’, occurring when a large shock of the past becomes too old to be considered

and leaves the estimation, causing a big change in the VaR which is not due to a change in the markets.

 Produced by the Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

Historical Simulation (HS) VaR is instead efficient when the risk manager cannot, or doesn’t intend to, make

assumptions on the underlying distribution of returns as it is calculated by the simple picking of the chosen

percentile loss in a given period of time. This method is even simpler than the parametric one and that is precisely

its weakness. The main underlying logic is that the past is a good predictor for the future. By looking back, it is

then possible to incorporate all data points into the risk calculation but this unfortunately leads to too simplistic a

model.

Filtered Historical Simulation VaR can be described as being a mixture of the historical simulation and EWMA

methods. Returns are first standardized, with volatility estimation weighted as in EWMA VaR, before a historical

percentile is applied to the standardized return as in the historical model. From the graphs it is easy to spot that

this model looks very much like EWMA, as returns are standardised and weighted by the same decay factor. The

main difference lies in the fact that this model is generally more conservative because it looks at the worst past

losses and adjust its VaR value according to it.

 Produced by the Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

The last line closes the initial ‘def’ statement and returns the requested VaR calculation.

VaR_Compare – let us see the differences

The next function is just a wrapper that calls the previously defined VaR function four times, each with a different

formula, wraps the VaR series in one datasets and then plots it in a chart.

 All the views expressed are opinions of Bocconi Students Investment Club members and can in no way be associated with Bocconi University. All the financial

recommendations offered are for educational purposes only. Bocconi Students Investment Club declines any responsibility for eventual losses you may incur

implementing all or part of the ideas contained in this website. The Bocconi Students Investment Club is not authorised to give investment advice. Information,

opinions and estimates contained in this report reflect a judgment at its original date of publication by Bocconi Students Investment Club and are subject to change

without notice. The price, value of and income from any of the securities or financial instruments mentioned in this report can fall as well as rise. Bocconi Students

Investment Club does not receive compensation and has no business relationship with any mentioned company.

Copyright © Feb-16 BSIC | Bocconi Students Investment Club

 Find our latest analyses and trade ideas on bsic.it

An example results using VaR_Compare on a series of an ETF’s daily returns:

Chart 1: Plot of VaR_Compare

TAGS: Value-at-Risk, Python, parametric, EWMA, historical, filtered historical

